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A novel, two step method is presented to model thin or thick layered homogeneous or periodic structures replacing them by 2D 

sheets with shell elements.  A unit cell model of the thin/thick 2D structure is used to extract the circuit Y matrix which characterizes 

the layer.  Degenerated prism elements modeled as shell elements are applied by doubling the essential variables on the surface.  The 

link between the two sides of the surface is governed by the circuit Y matrix obtained from the unit cell model. This way, shielding 

effects can be accurately and efficiently modeled by using the Finite Element Method without 3D meshing the layer(s). 

 
Index Terms— Homogenization, Thin sheets, Finite Element Method (FEM), Shell elements, Periodic structures, Frequency 

Selective Surface (FSS).  

 

I. INTRODUCTION 

T is common when applying the Finite Element Method 

(FEM) to replace layers by sheet impedance boundary 

condition. A typical example for that is to model thin 

homogeneous or periodic layers of high conductivity and/or 

permeability. The main reasons for using the sheet impedance 

boundary condition is to better cope with the strong decay of 

the electromagnetic field in the layers and/or to avoid meshing 

of thin layered structures. There exist two typical cases where 

a simple sheet impedance boundary condition accurately 

replaces the layer(s): the electromagnetic field rapidly decays 

to zero inside the layer due to high conductivity or the field 

does not change much in the normal direction of the layer. The 

effective impedance boundary condition can be given by 

analytical formula or by numerically modeling a unit cell of 

the structure [1, 2]. When the skin depth of the layer is about 

the same or smaller than the thickness, the electromagnetic 

field will change considerably in the normal direction of the 

layer but not necessarily so rapidly that the field will be zero 

inside the layer. For this case, the surface currents of the two 

sides of the layer will not be the same as they begin to be 

decoupled which also results in the tangential components of 

the electric field on the two sides of the layer to be different. 

The simple sheet impedance boundary condition is no 

applicable for this case since it maintains continuous 

tangential electric field. Shell elements can be used for this 

case to provide accurate results. 

 Classical shell elements are degenerated prism elements 

created by doubling the tangential components of the electric 

field on the two sides of the layer [3]. Assuming constant, 

linear or higher order variation (shape functions) in the normal 

direction, the finite element matrix contributions are evaluated 

analytically in the shell by taking into account the fact that the 

layer is thin. The main goal is fulfilled by avoiding meshing 

the thin layer. There are limits to the applicability of classical 

shell elements especially when the layer is not thin enough 

such that the field varies significantly in the normal direction 

or the field decays strongly in the layer. In these cases, 

modified analytical models can help [4 - 6].  

 There are cases, when the structure cannot be characterized 

by closed analytical formulas.  For example, periodic 

structures at high frequencies such as Frequency Selective 

Surfaces (FSSs) typically do not have known analytical 

formulas of surface impedance. The aim of this paper is to 

present a two stage method which does not need analytical 

coupling formulas to accurately replace FSSs by a sheet with 

shell elements. The first step is to extract a Y matrix of the 

FSS by solving a unit cell model of the layer similarly to what 

was proposed in [3]. The second step is to use the Y matrix to 

couple the two sides of the layer in the FEM. This method 

enables shielding effects to be accurately and efficiently 

modeled for an arbitrary, thin or even thick FSS. The proposed 

shell elements should be valid for any frequency and material 

composition.  Asymptotic behaviors and singularity treatments 

will also be presented in the final version in order to have a 

very robust broad frequency band shell element 

implementation. 

 To validate the special shell element method, shielding of a 

homogeneous copper layer was investigated. Shielding 

effectiveness was calculated by shell elements and compared 

to the reference solution got by using 3D FEM with very fine 

mesh. Results from real life practical FSS structures will be 

presented in the final version. 

II. MATHEMATICAL MODEL 

The goal is to set up an internal sheet boundary condition, 

which is equivalent to a layer (thin or thick), which can be 

seen in Fig. 1.  
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Fig. 1.  a) A layer to be replaced by an equivalent sheet boundary condition 

            b) Two adjacent finite element tetrahedra on  
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The field relationship between the two sides of the layer can 

be written as: 

 

                                                                                            (1) 

 
 

where the frequency dependent Y matrix characterizes the 

layer(s). It can be given in closed analytical form, e.g. by 

using a transmission line model of the layer ([4 - 6]) or in 

numerical form by linking to a FEM unit cell model of the 

layer [2]. The latter is the aim of this paper. 

 Since the relationship is known between the two sides of the 

layer, the 3D layer can be excluded from the computational 

domain by shrinking the thickness to zero and doubling the 

essential variables on .  This results in two regular 

Neumann boundary conditions on the two sides of : 
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where E

*
 denotes weighting functions in the FEM Galerkin 

method. 

This way, a shell element is similar to an outer impedance 

boundary condition.The coupling between the two sides is 

implemented via the terms with y12 and y21 by doubling 

degrees of freedoms of E on the surface. It also follows, when 

assembling the i-th tetrahedron, no coupling terms are 

including from the j-th tetrahedron except the y12 term and 

similarily for the j-th tetrahedron. 

Note that the method is also valid for thick layers. In that 

case, the thickness cannot be removed but the interior does not 

need to be meshed. The surface mesh of the two sides does not 

need to be conformal. The method is applicable both for layers 

with high conductivity and dielectric layers. For dielectric 

layers, the accuracy depends on the incident angle of the field. 

This dependence is much less when using layers with high 

conductivity.  The derivations above considered a thin large 

layer “floating” in other materials.  The final version will 

discuss the case when the layers touch each other.  Special 

handling is needed on the border of shell sheets where an 

element has both split edges and non-split edges [7].  In 

addtion, the Y matrix can become singular which results in a 

singular system matrix. These complications will also be 

discussed in the final version. 

III. VERIFICATION 

The shielding efficiency of a 4 um metal layer 

(e7S/m) has been studied both by a very fine 

discretized 3D FEM solution as reference and by shell 

elements presented in the paper. The unit cell model of the 

layer can be seen in Fig.2. A parellel plate waveguide was 

used with two 2um layers to obtain good accuracy for the Y 

matrix. The Y matrix was applied to the test case of a large 

sheet of shell element boundary condition in the middle of 

parallel plate waveguide (see Fig. 3). Fig. 4 shows the peak 

electric field along the dashed  central line of Fig. 3. The 

results of shell elements by using the Y matrix (red curves) 

extracted from the unit cell model agree well with the 

reference (green curves). The curves are on top of each other 

at low freuqencies. The unit cell can be the model of any 

complicated FSS. 

                            
Fig. 2. Unit cell of a 4um thick metal layer to calculate Y matrix 

       
Fig. 3. Shielding of a sheet in parallel plate waveguide 
 

 
Fig. 4. Shielding efficiency (E field normalized to 1) along the dashed  

            central line of Fig.3. 
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